TSTP Solution File: PUZ149^13 by cvc5---1.0.5

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cvc5---1.0.5
% Problem  : PUZ149^13 : TPTP v8.1.2. Released v8.1.0.
% Transfm  : none
% Format   : tptp
% Command  : do_cvc5 %s %d

% Computer : n032.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 13:13:37 EDT 2023

% Result   : Theorem 0.19s 0.46s
% Output   : Proof 0.19s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.12  % Problem    : PUZ149^13 : TPTP v8.1.2. Released v8.1.0.
% 0.00/0.13  % Command    : do_cvc5 %s %d
% 0.13/0.33  % Computer : n032.cluster.edu
% 0.13/0.33  % Model    : x86_64 x86_64
% 0.13/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.33  % Memory   : 8042.1875MB
% 0.13/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.33  % CPULimit   : 300
% 0.13/0.33  % WCLimit    : 300
% 0.13/0.33  % DateTime   : Sat Aug 26 22:51:59 EDT 2023
% 0.13/0.33  % CPUTime    : 
% 0.19/0.43  %----Proving TH0
% 0.19/0.43  %------------------------------------------------------------------------------
% 0.19/0.43  % File     : PUZ149^13 : TPTP v8.1.2. Released v8.1.0.
% 0.19/0.43  % Domain   : Puzzles
% 0.19/0.43  % Problem  : The bungling chemist
% 0.19/0.43  % Version  : [BP13] axioms.
% 0.19/0.43  % English  : Assume that a chemical compound c is made by pouring the elements
% 0.19/0.43  %            a and b into the same beaker. The two elements a and b are not
% 0.19/0.43  %            acid. It is possible that after making the compound c it results
% 0.19/0.43  %            in an acid. Then it is possible that pouring element a results
% 0.19/0.43  %            not in an acid, and pouring a and b in the beaker results in an
% 0.19/0.43  %            acid.
% 0.19/0.43  
% 0.19/0.43  % Refs     : [Bal98] Baldoni (1998), Normal Multimodal Logics: Automatic De
% 0.19/0.43  %          : [RO12]  Raths & Otten (2012), The QMLTP Problem Library for Fi
% 0.19/0.43  %          : [BP13]  Benzmueller & Paulson (2013), Quantified Multimodal Lo
% 0.19/0.43  %          : [Ste22] Steen (2022), An Extensible Logic Embedding Tool for L
% 0.19/0.43  % Source   : [TPTP]
% 0.19/0.43  % Names    : MML006+1 [QMLTP]
% 0.19/0.43  
% 0.19/0.43  % Status   : Theorem 
% 0.19/0.43  % Rating   : 0.31 v8.1.0
% 0.19/0.43  % Syntax   : Number of formulae    :   31 (   8 unt;  16 typ;   8 def)
% 0.19/0.43  %            Number of atoms       :   65 (   8 equ;   0 cnn)
% 0.19/0.43  %            Maximal formula atoms :    9 (   4 avg)
% 0.19/0.43  %            Number of connectives :   82 (   1   ~;   1   |;   2   &;  75   @)
% 0.19/0.43  %                                         (   1 <=>;   2  =>;   0  <=;   0 <~>)
% 0.19/0.43  %            Maximal formula depth :    7 (   3 avg)
% 0.19/0.43  %            Number of types       :    3 (   2 usr)
% 0.19/0.43  %            Number of type conns  :   49 (  49   >;   0   *;   0   +;   0  <<)
% 0.19/0.43  %            Number of symbols     :   15 (  14 usr;   4 con; 0-3 aty)
% 0.19/0.43  %            Number of variables   :   23 (  21   ^;   1   !;   1   ?;  23   :)
% 0.19/0.43  % SPC      : TH0_THM_EQU_NAR
% 0.19/0.43  
% 0.19/0.43  % Comments : This output was generated by embedproblem, version 1.7.1 (library
% 0.19/0.43  %            version 1.3). Generated on Thu Apr 28 13:18:18 EDT 2022 using
% 0.19/0.43  %            'modal' embedding, version 1.5.2. Logic specification used:
% 0.19/0.43  %            $modal == [$constants == $rigid,$quantification == $cumulative,
% 0.19/0.43  %            $modalities == $modal_system_K].
% 0.19/0.43  %------------------------------------------------------------------------------
% 0.19/0.43  thf(mworld,type,
% 0.19/0.43      mworld: $tType ).
% 0.19/0.43  
% 0.19/0.43  thf(mindex,type,
% 0.19/0.43      mindex: $tType ).
% 0.19/0.43  
% 0.19/0.43  thf(mrel_type,type,
% 0.19/0.43      mrel: mindex > mworld > mworld > $o ).
% 0.19/0.43  
% 0.19/0.43  thf('#pour_b_type',type,
% 0.19/0.43      '#pour_b': mindex ).
% 0.19/0.43  
% 0.19/0.43  thf('#make_c_type',type,
% 0.19/0.43      '#make_c': mindex ).
% 0.19/0.43  
% 0.19/0.43  thf('#pour_a_type',type,
% 0.19/0.43      '#pour_a': mindex ).
% 0.19/0.43  
% 0.19/0.43  thf(mactual_type,type,
% 0.19/0.43      mactual: mworld ).
% 0.19/0.43  
% 0.19/0.43  thf(mlocal_type,type,
% 0.19/0.43      mlocal: ( mworld > $o ) > $o ).
% 0.19/0.43  
% 0.19/0.43  thf(mlocal_def,definition,
% 0.19/0.43      ( mlocal
% 0.19/0.43      = ( ^ [Phi: mworld > $o] : ( Phi @ mactual ) ) ) ).
% 0.19/0.43  
% 0.19/0.43  thf(mnot_type,type,
% 0.19/0.43      mnot: ( mworld > $o ) > mworld > $o ).
% 0.19/0.43  
% 0.19/0.43  thf(mand_type,type,
% 0.19/0.43      mand: ( mworld > $o ) > ( mworld > $o ) > mworld > $o ).
% 0.19/0.43  
% 0.19/0.43  thf(mor_type,type,
% 0.19/0.43      mor: ( mworld > $o ) > ( mworld > $o ) > mworld > $o ).
% 0.19/0.43  
% 0.19/0.43  thf(mimplies_type,type,
% 0.19/0.43      mimplies: ( mworld > $o ) > ( mworld > $o ) > mworld > $o ).
% 0.19/0.43  
% 0.19/0.43  thf(mequiv_type,type,
% 0.19/0.43      mequiv: ( mworld > $o ) > ( mworld > $o ) > mworld > $o ).
% 0.19/0.43  
% 0.19/0.43  thf(mnot_def,definition,
% 0.19/0.43      ( mnot
% 0.19/0.43      = ( ^ [A: mworld > $o,W: mworld] :
% 0.19/0.43            ~ ( A @ W ) ) ) ).
% 0.19/0.43  
% 0.19/0.43  thf(mand_def,definition,
% 0.19/0.43      ( mand
% 0.19/0.43      = ( ^ [A: mworld > $o,B: mworld > $o,W: mworld] :
% 0.19/0.43            ( ( A @ W )
% 0.19/0.43            & ( B @ W ) ) ) ) ).
% 0.19/0.43  
% 0.19/0.43  thf(mor_def,definition,
% 0.19/0.43      ( mor
% 0.19/0.43      = ( ^ [A: mworld > $o,B: mworld > $o,W: mworld] :
% 0.19/0.43            ( ( A @ W )
% 0.19/0.43            | ( B @ W ) ) ) ) ).
% 0.19/0.43  
% 0.19/0.43  thf(mimplies_def,definition,
% 0.19/0.43      ( mimplies
% 0.19/0.43      = ( ^ [A: mworld > $o,B: mworld > $o,W: mworld] :
% 0.19/0.43            ( ( A @ W )
% 0.19/0.43           => ( B @ W ) ) ) ) ).
% 0.19/0.43  
% 0.19/0.43  thf(mequiv_def,definition,
% 0.19/0.43      ( mequiv
% 0.19/0.43      = ( ^ [A: mworld > $o,B: mworld > $o,W: mworld] :
% 0.19/0.43            ( ( A @ W )
% 0.19/0.43          <=> ( B @ W ) ) ) ) ).
% 0.19/0.43  
% 0.19/0.43  thf(mbox_type,type,
% 0.19/0.43      mbox: mindex > ( mworld > $o ) > mworld > $o ).
% 0.19/0.43  
% 0.19/0.43  thf(mbox_def,definition,
% 0.19/0.43      ( mbox
% 0.19/0.43      = ( ^ [R: mindex,Phi: mworld > $o,W: mworld] :
% 0.19/0.43          ! [V: mworld] :
% 0.19/0.43            ( ( mrel @ R @ W @ V )
% 0.19/0.43           => ( Phi @ V ) ) ) ) ).
% 0.19/0.43  
% 0.19/0.43  thf(mdia_type,type,
% 0.19/0.43      mdia: mindex > ( mworld > $o ) > mworld > $o ).
% 0.19/0.43  
% 0.19/0.43  thf(mdia_def,definition,
% 0.19/0.43      ( mdia
% 0.19/0.43      = ( ^ [R: mindex,Phi: mworld > $o,W: mworld] :
% 0.19/0.43          ? [V: mworld] :
% 0.19/0.43            ( ( mrel @ R @ W @ V )
% 0.19/0.43            & ( Phi @ V ) ) ) ) ).
% 0.19/0.43  
% 0.19/0.43  thf(acid_decl,type,
% 0.19/0.43      acid: mworld > $o ).
% 0.19/0.43  
% 0.19/0.43  thf(pour_ab_make_axiom_1,axiom,
% 0.19/0.43      mlocal @ ( mimplies @ ( mbox @ '#pour_a' @ ( mbox @ '#pour_b' @ acid ) ) @ ( mbox @ '#make_c' @ acid ) ) ).
% 0.19/0.43  
% 0.19/0.43  thf(pour_ab_make_axiom_2,axiom,
% 0.19/0.43      mlocal @ ( mimplies @ ( mbox @ '#pour_a' @ ( mbox @ '#pour_b' @ ( mnot @ acid ) ) ) @ ( mbox @ '#make_c' @ ( mnot @ acid ) ) ) ).
% 0.19/0.43  
% 0.19/0.43  thf(pour_ba_make_axiom_1,axiom,
% 0.19/0.43      mlocal @ ( mimplies @ ( mbox @ '#pour_b' @ ( mbox @ '#pour_a' @ acid ) ) @ ( mbox @ '#make_c' @ acid ) ) ).
% 0.19/0.43  
% 0.19/0.43  thf(pour_ba_make_axiom_2,axiom,
% 0.19/0.43      mlocal @ ( mimplies @ ( mbox @ '#pour_b' @ ( mbox @ '#pour_a' @ ( mnot @ acid ) ) ) @ ( mbox @ '#make_c' @ ( mnot @ acid ) ) ) ).
% 0.19/0.43  
% 0.19/0.43  thf(pour_a_acid,axiom,
% 0.19/0.43      mlocal @ ( mbox @ '#pour_a' @ ( mnot @ acid ) ) ).
% 0.19/0.43  
% 0.19/0.43  thf(make_c_acid,axiom,
% 0.19/0.43      mlocal @ ( mdia @ '#make_c' @ acid ) ).
% 0.19/0.43  
% 0.19/0.43  thf(conj,conjecture,
% 0.19/0.43      mlocal @ ( mand @ ( mdia @ '#pour_a' @ ( mnot @ acid ) ) @ ( mdia @ '#pour_a' @ ( mdia @ '#pour_b' @ acid ) ) ) ).
% 0.19/0.44  
% 0.19/0.44  %------------------------------------------------------------------------------
% 0.19/0.44  ------- convert to smt2 : /export/starexec/sandbox/tmp/tmp.Y69mviAAoS/cvc5---1.0.5_12906.p...
% 0.19/0.44  (declare-sort $$unsorted 0)
% 0.19/0.44  (declare-sort tptp.mworld 0)
% 0.19/0.44  (declare-sort tptp.mindex 0)
% 0.19/0.44  (declare-fun tptp.mrel (tptp.mindex tptp.mworld tptp.mworld) Bool)
% 0.19/0.44  (declare-fun |tptp.'#pour_b'| () tptp.mindex)
% 0.19/0.44  (declare-fun |tptp.'#make_c'| () tptp.mindex)
% 0.19/0.44  (declare-fun |tptp.'#pour_a'| () tptp.mindex)
% 0.19/0.44  (declare-fun tptp.mactual () tptp.mworld)
% 0.19/0.44  (declare-fun tptp.mlocal ((-> tptp.mworld Bool)) Bool)
% 0.19/0.44  (assert (= tptp.mlocal (lambda ((Phi (-> tptp.mworld Bool))) (@ Phi tptp.mactual))))
% 0.19/0.44  (declare-fun tptp.mnot ((-> tptp.mworld Bool) tptp.mworld) Bool)
% 0.19/0.44  (declare-fun tptp.mand ((-> tptp.mworld Bool) (-> tptp.mworld Bool) tptp.mworld) Bool)
% 0.19/0.44  (declare-fun tptp.mor ((-> tptp.mworld Bool) (-> tptp.mworld Bool) tptp.mworld) Bool)
% 0.19/0.44  (declare-fun tptp.mimplies ((-> tptp.mworld Bool) (-> tptp.mworld Bool) tptp.mworld) Bool)
% 0.19/0.44  (declare-fun tptp.mequiv ((-> tptp.mworld Bool) (-> tptp.mworld Bool) tptp.mworld) Bool)
% 0.19/0.44  (assert (= tptp.mnot (lambda ((A (-> tptp.mworld Bool)) (W tptp.mworld)) (not (@ A W)))))
% 0.19/0.44  (assert (= tptp.mand (lambda ((A (-> tptp.mworld Bool)) (B (-> tptp.mworld Bool)) (W tptp.mworld)) (and (@ A W) (@ B W)))))
% 0.19/0.44  (assert (= tptp.mor (lambda ((A (-> tptp.mworld Bool)) (B (-> tptp.mworld Bool)) (W tptp.mworld)) (or (@ A W) (@ B W)))))
% 0.19/0.44  (assert (= tptp.mimplies (lambda ((A (-> tptp.mworld Bool)) (B (-> tptp.mworld Bool)) (W tptp.mworld)) (=> (@ A W) (@ B W)))))
% 0.19/0.44  (assert (= tptp.mequiv (lambda ((A (-> tptp.mworld Bool)) (B (-> tptp.mworld Bool)) (W tptp.mworld)) (= (@ A W) (@ B W)))))
% 0.19/0.44  (declare-fun tptp.mbox (tptp.mindex (-> tptp.mworld Bool) tptp.mworld) Bool)
% 0.19/0.44  (assert (= tptp.mbox (lambda ((R tptp.mindex) (Phi (-> tptp.mworld Bool)) (W tptp.mworld)) (forall ((V tptp.mworld)) (=> (@ (@ (@ tptp.mrel R) W) V) (@ Phi V))))))
% 0.19/0.44  (declare-fun tptp.mdia (tptp.mindex (-> tptp.mworld Bool) tptp.mworld) Bool)
% 0.19/0.44  (assert (= tptp.mdia (lambda ((R tptp.mindex) (Phi (-> tptp.mworld Bool)) (W tptp.mworld)) (exists ((V tptp.mworld)) (and (@ (@ (@ tptp.mrel R) W) V) (@ Phi V))))))
% 0.19/0.44  (declare-fun tptp.acid (tptp.mworld) Bool)
% 0.19/0.44  (assert (@ tptp.mlocal (@ (@ tptp.mimplies (@ (@ tptp.mbox |tptp.'#pour_a'|) (@ (@ tptp.mbox |tptp.'#pour_b'|) tptp.acid))) (@ (@ tptp.mbox |tptp.'#make_c'|) tptp.acid))))
% 0.19/0.44  (assert (let ((_let_1 (@ tptp.mnot tptp.acid))) (@ tptp.mlocal (@ (@ tptp.mimplies (@ (@ tptp.mbox |tptp.'#pour_a'|) (@ (@ tptp.mbox |tptp.'#pour_b'|) _let_1))) (@ (@ tptp.mbox |tptp.'#make_c'|) _let_1)))))
% 0.19/0.44  (assert (@ tptp.mlocal (@ (@ tptp.mimplies (@ (@ tptp.mbox |tptp.'#pour_b'|) (@ (@ tptp.mbox |tptp.'#pour_a'|) tptp.acid))) (@ (@ tptp.mbox |tptp.'#make_c'|) tptp.acid))))
% 0.19/0.44  (assert (let ((_let_1 (@ tptp.mnot tptp.acid))) (@ tptp.mlocal (@ (@ tptp.mimplies (@ (@ tptp.mbox |tptp.'#pour_b'|) (@ (@ tptp.mbox |tptp.'#pour_a'|) _let_1))) (@ (@ tptp.mbox |tptp.'#make_c'|) _let_1)))))
% 0.19/0.44  (assert (@ tptp.mlocal (@ (@ tptp.mbox |tptp.'#pour_a'|) (@ tptp.mnot tptp.acid))))
% 0.19/0.46  (assert (@ tptp.mlocal (@ (@ tptp.mdia |tptp.'#make_c'|) tptp.acid)))
% 0.19/0.46  (assert (let ((_let_1 (@ tptp.mdia |tptp.'#pour_a'|))) (not (@ tptp.mlocal (@ (@ tptp.mand (@ _let_1 (@ tptp.mnot tptp.acid))) (@ _let_1 (@ (@ tptp.mdia |tptp.'#pour_b'|) tptp.acid)))))))
% 0.19/0.46  (set-info :filename cvc5---1.0.5_12906)
% 0.19/0.46  (check-sat-assuming ( true ))
% 0.19/0.46  ------- get file name : TPTP file name is PUZ149^13
% 0.19/0.46  ------- cvc5-thf : /export/starexec/sandbox/solver/bin/cvc5---1.0.5_12906.smt2...
% 0.19/0.46  --- Run --ho-elim --full-saturate-quant at 10...
% 0.19/0.46  % SZS status Theorem for PUZ149^13
% 0.19/0.46  % SZS output start Proof for PUZ149^13
% 0.19/0.46  (
% 0.19/0.46  (let ((_let_1 (@ tptp.mdia |tptp.'#pour_a'|))) (let ((_let_2 (@ tptp.mnot tptp.acid))) (let ((_let_3 (not (@ tptp.mlocal (@ (@ tptp.mand (@ _let_1 _let_2)) (@ _let_1 (@ (@ tptp.mdia |tptp.'#pour_b'|) tptp.acid))))))) (let ((_let_4 (@ tptp.mlocal (@ (@ tptp.mdia |tptp.'#make_c'|) tptp.acid)))) (let ((_let_5 (@ tptp.mbox |tptp.'#pour_a'|))) (let ((_let_6 (@ _let_5 _let_2))) (let ((_let_7 (@ tptp.mlocal _let_6))) (let ((_let_8 (@ tptp.mbox |tptp.'#make_c'|))) (let ((_let_9 (@ _let_8 _let_2))) (let ((_let_10 (@ tptp.mbox |tptp.'#pour_b'|))) (let ((_let_11 (@ _let_8 tptp.acid))) (let ((_let_12 (@ tptp.mlocal (@ (@ tptp.mimplies (@ _let_5 (@ _let_10 _let_2))) _let_9)))) (let ((_let_13 (= tptp.mdia (lambda ((R tptp.mindex) (Phi (-> tptp.mworld Bool)) (W tptp.mworld)) (exists ((V tptp.mworld)) (and (@ (@ (@ tptp.mrel R) W) V) (@ Phi V))))))) (let ((_let_14 (= tptp.mbox (lambda ((R tptp.mindex) (Phi (-> tptp.mworld Bool)) (W tptp.mworld)) (forall ((V tptp.mworld)) (=> (@ (@ (@ tptp.mrel R) W) V) (@ Phi V))))))) (let ((_let_15 (= tptp.mequiv (lambda ((A (-> tptp.mworld Bool)) (B (-> tptp.mworld Bool)) (W tptp.mworld)) (= (@ A W) (@ B W)))))) (let ((_let_16 (= tptp.mimplies (lambda ((A (-> tptp.mworld Bool)) (B (-> tptp.mworld Bool)) (W tptp.mworld)) (=> (@ A W) (@ B W)))))) (let ((_let_17 (= tptp.mor (lambda ((A (-> tptp.mworld Bool)) (B (-> tptp.mworld Bool)) (W tptp.mworld)) (or (@ A W) (@ B W)))))) (let ((_let_18 (= tptp.mand (lambda ((A (-> tptp.mworld Bool)) (B (-> tptp.mworld Bool)) (W tptp.mworld)) (and (@ A W) (@ B W)))))) (let ((_let_19 (= tptp.mnot (lambda ((A (-> tptp.mworld Bool)) (W tptp.mworld)) (not (@ A W)))))) (let ((_let_20 (= tptp.mlocal (lambda ((Phi (-> tptp.mworld Bool))) (@ Phi tptp.mactual))))) (let ((_let_21 (ho_6 (ho_5 k_4 |tptp.'#pour_a'|) tptp.mactual))) (let ((_let_22 (ho_3 _let_21 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_9))) (let ((_let_23 (ho_3 k_2 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_9))) (let ((_let_24 (not _let_22))) (let ((_let_25 (or _let_24 _let_23))) (let ((_let_26 (forall ((V tptp.mworld)) (not (ho_3 (ho_6 (ho_5 k_4 |tptp.'#pour_a'|) tptp.mactual) V))))) (let ((_let_27 (forall ((BOUND_VARIABLE_878 tptp.mworld)) (or (not (ho_3 (ho_6 (ho_5 k_4 |tptp.'#pour_b'|) BOUND_VARIABLE_878) BOUND_VARIABLE_878)) (not (ho_3 k_2 BOUND_VARIABLE_878)))))) (let ((_let_28 (or _let_27 _let_26))) (let ((_let_29 (not _let_26))) (let ((_let_30 (forall ((V tptp.mworld)) (or (not (ho_3 (ho_6 (ho_5 k_4 |tptp.'#make_c'|) tptp.mactual) V)) (not (ho_3 k_2 V)))))) (let ((_let_31 (not _let_28))) (let ((_let_32 (forall ((V tptp.mworld)) (or (not (ho_3 (ho_6 (ho_5 k_4 |tptp.'#make_c'|) tptp.mactual) V)) (not (ho_3 k_2 V)))))) (let ((_let_33 (not _let_30))) (let ((_let_34 (AND_INTRO (EQ_RESOLVE (ASSUME :args (_let_13)) (MACRO_SR_EQ_INTRO :args (_let_13 SB_DEFAULT SBA_FIXPOINT))) (EQ_RESOLVE (ASSUME :args (_let_14)) (MACRO_SR_EQ_INTRO :args (_let_14 SB_DEFAULT SBA_FIXPOINT))) (ASSUME :args (_let_15)) (ASSUME :args (_let_16)) (ASSUME :args (_let_17)) (ASSUME :args (_let_18)) (ASSUME :args (_let_19)) (ASSUME :args (_let_20))))) (let ((_let_35 (= V V))) (let ((_let_36 (MACRO_RESOLUTION_TRUST (REORDERING (IMPLIES_ELIM (EQ_RESOLVE (ASSUME :args (_let_12)) (TRANS (MACRO_SR_EQ_INTRO _let_34 :args (_let_12 SB_DEFAULT SBA_FIXPOINT)) (PREPROCESS :args ((= (=> (or (forall ((BOUND_VARIABLE_878 tptp.mworld)) (or (not (@ (@ (@ tptp.mrel |tptp.'#pour_b'|) BOUND_VARIABLE_878) BOUND_VARIABLE_878)) (not (@ tptp.acid BOUND_VARIABLE_878)))) (forall ((V tptp.mworld)) (not (@ (@ (@ tptp.mrel |tptp.'#pour_a'|) tptp.mactual) V)))) (forall ((V tptp.mworld)) (or (not (@ (@ (@ tptp.mrel |tptp.'#make_c'|) tptp.mactual) V)) (not (@ tptp.acid V))))) (=> _let_28 _let_30))))))) :args ((or _let_30 _let_31))) (MACRO_RESOLUTION_TRUST (REORDERING (EQUIV_ELIM1 (ALPHA_EQUIV :args (_let_30 _let_35))) :args ((or _let_32 _let_33))) (EQ_RESOLVE (ASSUME :args (_let_4)) (TRANS (MACRO_SR_EQ_INTRO _let_34 :args (_let_4 SB_DEFAULT SBA_FIXPOINT)) (PREPROCESS :args ((= (not (forall ((V tptp.mworld)) (or (not (@ (@ (@ tptp.mrel |tptp.'#make_c'|) tptp.mactual) V)) (not (@ tptp.acid V))))) (not _let_32)))))) :args (_let_33 true _let_32)) :args (_let_31 true _let_30)))) (let ((_let_37 (MACRO_RESOLUTION_TRUST (CNF_OR_NEG :args (_let_28 1)) _let_36 :args (_let_29 true _let_28)))) (let ((_let_38 (or))) (let ((_let_39 (_let_29))) (let ((_let_40 (MACRO_RESOLUTION_TRUST (EQ_RESOLVE (IMPLIES_ELIM (EQ_RESOLVE (SCOPE (SKOLEMIZE (ASSUME :args _let_39)) :args _let_39) (REWRITE :args ((=> _let_29 (not _let_24)))))) (CONG (MACRO_SR_PRED_INTRO :args ((= (not _let_29) _let_26))) (REFL :args (_let_22)) :args _let_38)) _let_37 :args (_let_22 true _let_26)))) (let ((_let_41 (forall ((V tptp.mworld)) (or (not (ho_3 (ho_6 (ho_5 k_4 |tptp.'#pour_a'|) tptp.mactual) V)) (ho_3 k_2 V))))) (let ((_let_42 (forall ((V tptp.mworld)) (not (ho_3 (ho_6 (ho_5 k_4 |tptp.'#pour_a'|) tptp.mactual) V))))) (let ((_let_43 (forall ((BOUND_VARIABLE_1142 tptp.mworld)) (or (not (ho_3 (ho_6 (ho_5 k_4 |tptp.'#pour_b'|) BOUND_VARIABLE_1142) BOUND_VARIABLE_1142)) (not (ho_3 k_2 BOUND_VARIABLE_1142)))))) (let ((_let_44 (or _let_43 _let_42))) (let ((_let_45 (not _let_44))) (let ((_let_46 (not _let_41))) (let ((_let_47 (_let_41))) (let ((_let_48 (not _let_23))) (let ((_let_49 (or _let_24 _let_48))) (let ((_let_50 (forall ((V tptp.mworld)) (or (not (ho_3 (ho_6 (ho_5 k_4 |tptp.'#pour_a'|) tptp.mactual) V)) (not (ho_3 k_2 V)))))) (let ((_let_51 (EQ_RESOLVE (ASSUME :args (_let_7)) (TRANS (MACRO_SR_EQ_INTRO _let_34 :args (_let_7 SB_DEFAULT SBA_FIXPOINT)) (PREPROCESS :args ((= (forall ((V tptp.mworld)) (or (not (@ (@ (@ tptp.mrel |tptp.'#pour_a'|) tptp.mactual) V)) (not (@ tptp.acid V)))) _let_50))))))) (SCOPE (SCOPE (MACRO_RESOLUTION_TRUST (REORDERING (CNF_OR_POS :args (_let_25)) :args ((or _let_24 _let_23 (not _let_25)))) (MACRO_RESOLUTION_TRUST (REORDERING (CNF_OR_POS :args (_let_49)) :args ((or _let_24 _let_48 (not _let_49)))) _let_40 (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (SCOPE (INSTANTIATE _let_51 :args (SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_9 QUANTIFIERS_INST_E_MATCHING_SIMPLE ((not (= (ho_3 _let_21 V) false))))) :args (_let_50))) _let_51 :args (_let_49 false _let_50)) :args (_let_48 false _let_22 false _let_49)) (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (SCOPE (INSTANTIATE (ASSUME :args _let_47) :args (SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_9 QUANTIFIERS_INST_E_MATCHING_SIMPLE ((not (= (ho_3 _let_21 V) false))))) :args _let_47)) (MACRO_RESOLUTION_TRUST (REORDERING (EQ_RESOLVE (NOT_AND (EQ_RESOLVE (ASSUME :args (_let_3)) (TRANS (MACRO_SR_EQ_INTRO _let_34 :args (_let_3 SB_DEFAULT SBA_FIXPOINT)) (PREPROCESS :args ((= (not (and (not (forall ((V tptp.mworld)) (or (not (@ (@ (@ tptp.mrel |tptp.'#pour_a'|) tptp.mactual) V)) (@ tptp.acid V)))) (not (or (forall ((BOUND_VARIABLE_1142 tptp.mworld)) (or (not (@ (@ (@ tptp.mrel |tptp.'#pour_b'|) BOUND_VARIABLE_1142) BOUND_VARIABLE_1142)) (not (@ tptp.acid BOUND_VARIABLE_1142)))) (forall ((V tptp.mworld)) (not (@ (@ (@ tptp.mrel |tptp.'#pour_a'|) tptp.mactual) V))))))) (not (and _let_46 _let_45)))))))) (CONG (MACRO_SR_PRED_INTRO :args ((= (not _let_46) _let_41))) (MACRO_SR_PRED_INTRO :args ((= (not _let_45) _let_44))) :args _let_38)) :args ((or _let_44 _let_41))) (MACRO_RESOLUTION_TRUST (REORDERING (CNF_OR_POS :args (_let_44)) :args ((or _let_42 _let_43 _let_45))) (MACRO_RESOLUTION_TRUST (EQUIV_ELIM2 (ALPHA_EQUIV :args (_let_26 _let_35))) _let_37 :args ((not _let_42) true _let_26)) (MACRO_RESOLUTION_TRUST (EQUIV_ELIM2 (ALPHA_EQUIV :args (_let_27 (= BOUND_VARIABLE_878 BOUND_VARIABLE_1142)))) (MACRO_RESOLUTION_TRUST (CNF_OR_NEG :args (_let_28 0)) _let_36 :args ((not _let_27) true _let_28)) :args ((not _let_43) true _let_27)) :args (_let_45 true _let_42 true _let_43)) :args (_let_41 true _let_44)) :args (_let_25 false _let_41)) _let_40 :args (false true _let_23 false _let_25 false _let_22)) :args (_let_20 _let_19 _let_18 _let_17 _let_16 _let_15 _let_14 _let_13 (@ tptp.mlocal (@ (@ tptp.mimplies (@ _let_5 (@ _let_10 tptp.acid))) _let_11)) _let_12 (@ tptp.mlocal (@ (@ tptp.mimplies (@ _let_10 (@ _let_5 tptp.acid))) _let_11)) (@ tptp.mlocal (@ (@ tptp.mimplies (@ _let_10 _let_6)) _let_9)) _let_7 _let_4 _let_3 true))))))))))))))))))))))))))))))))))))))))))))))))))))))
% 0.19/0.46  )
% 0.19/0.46  % SZS output end Proof for PUZ149^13
% 0.19/0.46  % cvc5---1.0.5 exiting
% 0.19/0.46  % cvc5---1.0.5 exiting
%------------------------------------------------------------------------------